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1. Introduction

It is of great interest to see how far one can use AdS/CFT [1, 2] to understand the strongly

interacting nuclear force. So far it has been suggested to apply in the strongly interacting

quark gluon plasma [3 – 8] and phenomenological aspect of chiral dynamics [9 – 15]. Espe-

cially interesting is to investigate the baryon density effect [16 – 22] on the phases of the

Yang-Mill theory.

The purpose of the paper is to study the gravity back reaction to the baryon density

in the effective ads/qcd model by reconsidering the role of the charged AdS black hole in

AdS/CFT. Previously this background has been studied [23] and its local U(1) charge is

identified as dual to the R-charge. See also [24]. The gravity back reaction for the general

flavor branes has been studied in various contexts [25 – 29] and usually it is very non-trivial

problem. Here we point out that in the case of effective AdS/QCD model [14], which can

be interpreted to have bulk-filling-flavor-branes, the gravity back reaction is simple and

the result is nothing but the charged AdS black hole, where the effect of baryon charge on

the metric is proportional to (Nf/Nc)NB . This Nf/Nc suppression can be attributed to

the fact that R-charge is carried by adjoint scalar while baryon charge is carried by the

bi-fundamentals. If we consider strictly large Nc limit, the metric correction is negligi-

ble. However, if we are interested in Nf/Nc correction, this is important. Such a Nf/Nc
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correction to the metric results in corresponding corrections in all physical observables.

Especially, in phenomenological applications where one calculate using the finite value of

Nc as well as finite Nf , this Nf/Nc correction will be essential. One of the consequence

of back reaction of the metric is the qualitative change in phase diagram: it closes at the

finite density, while in the probe brane embedding approach [17] or in the hard wall model

without gravity back reaction [22] the phase diagrams does not close. The main reason for

this change can be traced back to the charge dependence of the temperature.

We also consider an issue which is confusing in the present literature. We first describe

the problem by summarizing the relevant history of baryon density problem in AdS/QCD:

In [16], it is suggested that the baryon/quark chemical potential should be treated as the

boundary value of the brane electric potential A0 and electric potential was determined by

the vector domination. In [17], it was suggested that one can use equation of motion of DBI

action to determine the electric potential. Non-trivial Electric potential can exist only with

some sources. However, the authors of [17] imposed a smoothness condition on the electric

potential A0 for the in the chiraly asymmetric phase. As a result, constant potential was ob-

tained. This is the same as assuming that there is no source on the brane. In [20], the same

boundary condition is chosen and it is related to the earlier work on Hawing-Page transition

of charged AdS black hole [23], where for the fixed chemical potential, low temperature

phase is associated with the thermal AdS space. As a consequence, electric potential is

constant and there is no chemical potential dependence of thermodynamics and average

baryon density is zero in that phase phase. We believe this is not physically acceptable.1

However, the Hawking-Page transition in [23] is for the case with S3 boundary, and for

the flat boundary, there is no phase transition. Therefore there is no necessity to consider

thermal AdS for the low temperature, and the work in [23] is not relevant to this case.

However, when we consider the round boundary or introduce the confining phase with

hard wall, this is still an issue. One of the purpose of this paper is to consider above issue

in the context of hard wall model.

The rest of the paper is in following order. In section 2, we set up the AdS/QCD

from brane embedding point of view and derive the gauge coupling on the in terms of

basic variables Nc, Nf and describe charged ads black hole as a back reaction of gravity

to the flavor branes. We also and determine the metric dependence of the baryon charge

density. In section 3, we describe the thermodynamics of the theory without confinement.

In section 4, we discuss the issue of chemical potential dependence of grand potential and

we explicitly workout the phase diagram in temperature and chemical potential (T, µ) for

the theory with confinement. In section, we summarize and describe some future projects.

2. Baryon density and the gravity back-reaction

In this section we set up the AdS/QCD from brane embedding point of view and derive

the gauge coupling on the in terms of basic variables Nc,Nf and consider the metric back

reaction to the presence of baryon charge density.

1There is another issue regarding baryon density in AdS/CFT, which we will not be treated in this paper

and will be mentioned in the discussion section.
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2.1 Bulk filling branes and AdS/QCD.

We start from the DBI action of the D7-brane. For a given background and embedding, we

can write the DBI action interms of the induced metric gab and gauge field on the brane.2

IDBI = −Nfµ7

∫

dσ8
√

− det(gab + 2πα′Fab), (2.1)

where µ7 is the D7-brane tension The D7 embedding of our concern is those wrapping S3 of

S5 and cover our own spacetime. If we neglect the S3 dependence of the field variable, (2.1)

defines a 5 dimensional model. The DBI action can be expanded in the power of α′Fab and

the quadratic part is

I2 = −Nfµ7(2πα′)2Ω3 ·
1

4

∫

d5σ

√

− det g(8)FabF
ab, (2.2)

where Ω3 is the volume of S3 and we have used
√

det(1 + A) = 1 − 1
4TrA2 − 1

8TrA4 +
1
32 (TrA2)2 + · · ·, for traceless matrix A = g−1F . Eq. (2.2) can be used to define phe-

nomenological models as an approximation to the original DBI action.

We first take the D3 background in the near horizon limit:

ds2 =
r2

R2

(

−dt2 + d~x2
)

+ R2

(

dr2

r2
+ dΩ2

5

)

, (2.3)

=
r2

R2

(

−dt2 + d~x2
)

+
R2

r2

(

dρ2 + ρ2dΩ2
3 + dy2 + y2dϕ2

)

,

In this background, the flat embedding y = y0 = 2πα′mq is allowed, for which r2 = y2
0 + ρ2

and the induced metric on the brane is given by

ds2
D7 =

r2

R2

(

−dt2 + d~x2
)

+
R2

r2

(

dρ2 + ρ2dΩ2
3

)

. (2.4)

For this case the volume factor is simplified
√

− det g(8) = ρ3. One should notice that if

we further assume that y0 = 0, then the D7 fills all the AdS5 and the background radial

coordinate r is identical to the world volume radial coordinate, the induced metric. is

identical to the AdS bulk metric. The action now becomes precisely the gauge action part

of AdS/QCD model of [14]

Iguage = − 1

4g2

∫

d4xdr

√

− det g(5)FµνFµν (2.5)

with identification
1

g2
= µ7Ω3(2πα′)2R3 =

NcNf

(2π)2R
, (2.6)

and
√

− det g(5) =
√

− det g(8)/R3. Notice that the action contains the metric through

the volume factor as well as through two gµν factors in the Fµν . For a general background

and a general embedding, eq.(2.5) will contain the correction coming from the difference

2The Chern-Simons term vanishes in the present case.

– 3 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
8

of induced metric from the background metric. One can build models considering such

corrections, which is a deviation of original hard wall model.

Here, instead of considering such correction we ask following question: When the probe

brane is filling the 5 dimensional bulk which is asymptotically AdS space, can the induced

metric be the same with the bulk metric? The answer positive. For AdS Schwarzschild

case, we can work out the answer explicitly. Take the black brane solution in the form

where the radial coordinate of bulk and brane is the same and also D7’s winding structure

is manifest:

ds2 =
r2

R2

(

−f(r)dt2 + d~x2
)

+ R2

(

dr2

f(r)r2
+ dθ2 + sin2 θdψ2 + cos2 θdΩ2

3

)

, (2.7)

Then the induced metric is specified if we determine θ in terms of r:

ds2
D7 =

r2

R2

(

−f(r)dt2 + d~x2
)

+ R2

((

1

f(r)r2
+ θ′(r)

2
)

dr2 + cos2 θdΩ2
3

)

, (2.8)

For the space filling embedding we are interested,

r sin θ = 2πα′mq → 0, (2.9)

therefore θ′ = 0. In this case, the world volume measure factor is reduced to that of 5

dimensional background metric:

√

− det g(8)/R3 → (r/R)3 (2.10)

which is precisely the volume factor of AdS5 Schwarzschild solution.

For more practical purpose, we can simply assume that (2.5) is the definition of the

model and add necessary terms like scalars and without further consideration of brane

embedding [14]. The rest of the paper is essentially following this philosophy by taking the

space filling branes as an assumption.

2.2 The baryon chemical potential and charged AdS black hole.

The chemical potential can be treated as the tail of the electric potential living on the

probe brane [16, 17]. In the brane embedding approach, considering back reaction of the

metric is very hard to study analytically. However, when the brane is completely filling

the background space-time, it can be easily done. This is because there is a unique way for

the U(1) gauge potential to couple to the gravity: the solution is nothing but the Reisner-

Nordstrom metric considered in ref. [23], where the charge was identified as the R-charge,

whose carrier is adjoint representation of N = 4 gauge theory. Therefore its gravitational

coupling’s order of magnitude goes like 1/8πG ∼ N2
c . In our case the charge is weighted

by Nf/Nc, and so is the back reaction.

Our starting point is to add gravity plus U(1) gauge interaction term to the phe-

nomenological model of AdS/QCD [14] action:

I =
1

2κ2

∫

d5x
√−g

(

R +
12

R2

)

− 1

4g2

∫

d5x
√−gFµνFµν + Iflavor[AL, AR; Φ]. (2.11)
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with κ2 = 8πG5, and then neglect the original scalar and non-abelian flavour gauge inter-

action part Iflavor[AL, AR; Φ]. Since we want to utilize the known charged AdS balck hole

solution [23], the ansatz for the metric and the potential is

ds2 =
r2

R2

(

−f(r)dt2 + d~x2
)

+
R2

r2

dr2

f(r)
, with f(r) =

r2

R2
− m

r2
+

q2

r4
(2.12)

A0 = µ − Q

r2
. (2.13)

Notice that q is a parameter describing the metric deformation while Q is the actual charge.

We ask what is the precise relation of the parameter q and Q to satisfy the equation of

motion:

Rµν − 1

2
gµνR− 6

R2
= κ2Tµν , (2.14)

Tµν =
−2√−g

∂I

∂gµν
=

1

g2

(

FµaF
νa − 1

4
gµνFabF

ab

)

+ TL,R
µν . (2.15)

Since we consider back reaction to baryon charge, which is the diagonal U(1) charge of the

flavor brane, we set non-abelian fields zero: TL,R
µν = 0. The answer is

q2 =
2κ2

3g2
Q2 =

2

3

Nf

Nc
R2Q2 := a2R2Q2, (2.16)

confirming Nc/Nf dependence as we stated above. Here we have used R3

κ2 = N2
c

4π2 , and
R
g2 =

NcNf

4π2 . This suppression in gravity coupling of the baryons relative to R-charges

is, of course, due to the difference in degrees of freedom between the fundamentals and

adjoints. If we consider strictly large Nc limit, the metric correction is negligible. However,

if we are interested in Nf/Nc correction, this is important. Such a Nf/Nc correction to

the metric results in corresponding corrections in all physical observables. Especially, in

phenomenological applications where one calculate using the finite value of Nc as well as

finite Nf , this Nf/Nc correction will be essential and this will most important implication

of this work. In this way, the baryon density problem in AdS/QCD can have a simple

description including the back reaction of the metric. Without metric correction, it is

difficult for the AdS/QCD defined as a quadratic action of gauge fields to encode the

density effect unless one add higher order terms (O(F 4)) [16] or Wess-Zumino term [21].

3. Thermodynamics without hard-wall.

For the spherical boundary, there is a Hawking-Page transition (HPT) associated with

deconfinement phase transition [2] and the HPT for the charged black hole in AdS space

(AdSRN) was discussed in [23]. For the flat boundary we are interested here, there is no

other scale than the temperature and therefore there is no such transition: the system is

always in a de-confined phase, if we do not install hard wall. There will be some differences

in fixed charge case compared with ref. [23] apart from the topology of the boundary.
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3.1 Fixed chemical potential

The total action is evaluated to be3

I =
V3

2κ2

∫ ∞

r+

dr

∫ β

0

√

g(5)

[

2q2

r6
+

8

R2
− 4κ2

g2

Q2

r6

]

. (3.1)

where L is a large cutoff at large radius. The last term can be written −6q2/r6 using
Q2

g2 = 3q2

2κ2 . If we define the horizon radius r+ as the larger zero of f(r) = 0, we can write

the mass in terms of r+

m =
r4
+

R2
+

q2

r2
+

. (3.2)

The temperature is defined by the singularity free condition:

T =
f ′(r+)

4π
=

r+

πR2
− q2

2πr5
+

=
r+

πR2
− a2R2µ2

2πr+
. (3.3)

where we used the relation between the chemical potential and the charge µ = Q/r2
+,

determined by the condition that electric potential is vanishing at the horizon [30, 23, 17,

18]:

A0(r+) = µ − Q/r2
+ = 0, (3.4)

and

q = aRQ = aRr2
+µ, with a =

√

2Nf

3Nc
. (3.5)

The action is evaluated to be,

IRN =
βV3

2κ2R3

[

−q2

r2
+

2r4

R2

]L

r+

, (3.6)

which diverge as L → ∞. We regularize by the value of the thermal AdS action:

IAdS =
V3β

′

2κ2R3

2L4

R2
. (3.7)

We determine β′(≃ β) such that the volume of the two space outside cutoff r = L is equal:

β′ = β
(

1 − mR2/2L4
)

. (3.8)

Then, the regularized action is given by,

I
(reg)
RN = − βV3

2κ2R3

(

r4
+

R2
+

q2

r2
+

)

, (3.9)

where we used (3.2).

3Here we should work with Euclidean action which is obtained by taking a overall - sign in the Minkowski

action. To make the electric potential real, we also have to change F
2
→ −F

2 .
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Now, we can calculate thermodynamic functions like pressure P , energy E , total Mass

M , entropy S and total charge Qtot can be calculated to be

E =

(

∂I

∂β

)

µ

− µ

β

(

∂I

∂β

)

β

= 3mb = M = 3P, (3.10)

S = β

(

∂I

∂β

)

µ

− I = 4πr3
+b =

A

4G
, (3.11)

〈Q〉 = −β−1

(

∂I

∂µ

)

β

= 6qb, (3.12)

where A is volume of horizon and constant b is given by

b =
V3

2κ2R3
=

N2
c V3

8π2R6
. (3.13)

It is interesting to find an expression of entropy and energy in terms of temperature and

chemical potential in small charge and high temperature region.

s =
S

V3
=

π2

2
N2

c T 3 +
1

2
NcNfµ2T +

1

54π4

N3
f

Nc

µ6

T 3
− 1

54π6

N4
f

N2
c

µ8

T 5
· · · , (3.14)

ǫ =
E

V3
=

3π2

8
N2

c T 4 +
3

4
NcNfµ2T 2 +

N2
f

4π2
µ4 +

1

36π4

N3
f

Nc

µ6

T 2
+

1

72π6

N4
f

N2
c

µ8

T 4
· · · . (3.15)

Notice that coupling dependence is hidden in Nf in this expression through R/g2 =

NcNf/4π2. It would be interesting to compare this with the gauge theory calculation

that can be done along the line of recent paper by Yaffe et.al [33].

3.2 Fixed charge

For the canonical ensemble, The quark number is conserved under the deconfinement-

phase- transition. Let’s assume that µ as the quark number and treat it as a conserved

quantum number under the deconfinement phase transition. We need to add a boundary

term [30] to guarantee the equation of motion with the fixed charge.

IA = − 1

4g2

∫

d5x
√−gF 2 → IA +

1

g2

∫

Σ
FµνnµAν . (3.16)

The added surface term has the effect that is precisely changing the sign of the electro-

magnetic action:4 IA + Isurface = −IA at on-shell. Therefore the value of action IRN with

cut off at large radius L is

Ĩ
(reg)
RN =

βV3

2κ2R3

(

− r4
+

R2
+

5q2

r2
+

)

. (3.17)

One should notice that the result is precisely equal to that of Legendre transformation:

Ĩ = I − µ

(

∂I

∂µ

)

β

. (3.18)

4This addition of surface charge does not have essential effect in discussing the issues above.
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This relation is not accidental: Ĩ is describing the fixed charge sector where Gauss law

constrains the field configurations and equations of motion should be derived not from the

action but its Legendre transformation. Identifying grand potential Ω by I = βΩ, the above

relation corresponds to the thermodynamic relation between the free energy F = Ĩ/β and

the grand potential Ω.

F = Ω + µQ̄. (3.19)

Once we realize the thermodynamic potential in terms of action and its Legendre transfor-

mation, we can use them to calculate physical quantities.

S = −
(

∂F

∂T

)

q

= b · 4πr3
+ =

A

4G
, (3.20)

E = F + TS = 3bm = M, (3.21)

µ =

(

∂F

∂Qtot

)

q

=
Q

r2
+

. (3.22)

It turns out that canonical (fixed charge) and grand canonical (fixed chemical potential)

give completely equivalent description in this case. In this section, there is no phase

transition and charge free AdS space is used just for the regularization. Since the relation

between the free energy and grand canonical potential is consequence of charge conservation

and gauss law, it should hold regardless of presence of phase transition.

Our result in this subsection should be compared with the result of ref. [23], where the

authors used extremal charged black hole as a background to subtract, making some differ-

ence with the result here. Since extremal black hole can not have arbitrary temperature,

it can not be used as a regularizing background without introducing conical singularity.

4. Charged background with Hard wall: Hawking-Page transition

To discuss the confinement in the context of D3 background, one has to introduce the IR

cutoff, called hard wall [10, 14]. In gravity background and brane embedding picture, this

corresponds to the situation where D7’s (as well as the baryon vertices) are expelled by the

repulsive core of the confining background [32]. The repulsive hard core is singular [32],

and physically relevant region must be somewhat away from the singularity because the

singularity invalidate the solution’s reliability. One has to put a boundary by hand to cut

off the unreliable region around the singularity. The IR brane in phenomenological model

with can be understood as this boundary with background simplified to AdS5. We assume

that probe flavor brane is occupying all the relevant region of bulk of AdS5.

In the interesting paper [31], it was pointed out that in the presence of IR brane, HPT

exists even for the flat boundary case and worked out explicitly for the hard wall model

without charge [10, 14]. Here we study the analogue of it in the presence of baryon charges.

4.1 Fixed charge

For high temperature, the system is described by a charged AdS black hole and for low

temperature, confining configuration takes over by set-up. The key question is what is the

– 8 –
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low temperature pair of charged black hole for the purpose of the HPT. There are a few

possibilities.

The fist possibility is the to take the extremal AdS RN black hole to take care of the

charge conservation. In ref. [23], phase diagram was worked out with this choice. Then

f ′(r+) = 0 and f(r+)=0 so that for the given value of charge the horizon and the mass has

fixed value m∗ = 3
2

q2

r2
∗

, and r∗ = 2−1/6q1/3R1/3. Therefore

Iextremal RN =
β∗V3

2κ2R3

(

2(L4 − r4
∗)

R2
+

4q2

r2
∗

)

. (4.1)

Under this choice, we need to take the difference between (3.17) and (4.1) with a “common”

inverse temperature β, instead of β∗ in (4.1). However, while thermal AdS can be in any

temperature, the extremal black hole has a fixed temperature, therefore it can not be used

as a background at an arbitrary temperature competing with non-extremal black hole.5

The only background we know that allows arbitrary temperature at low temperature

is the thermal AdS background. But, this background does not have any charge. How can

we interpret this situation? Where the charges can go as temperature cools down? There

are two options to interpret this:

1. If we keep the charge fixed, there is no confinement phase transition as temperature

goes down.

2. We take thermal AdS as a reference background for the low temperature and take

care of the charge conservation by IR-brane.

Let’s consider the former possibility: When we do not introduce the hard wall this is what

happens as we discussed in section 3. However, in the presence of hard wall or confinement,

it is physically implausible for a few reasons. First, in the absence of charge we know there

is a confinement phase transition [31]. Now, suppose phase transition disappear by adding

baryons as it says. Then, this phenomena is independent of how much charge is there, so

even in the extreme low density disappearance of HPT is implied in this case. How just

a few charges can change the phase diagram of a system discontinuously? Secondly, the

confinement is determined by the dynamics of gluon degree of freedom which are O(N2
c ),

and we do not expect it can be abolished by introducing quark degree of freedom which is

just O(Nc). Therefore in the presence of confining set-up in low temperature, we do not

take the first possibility.

The second possibility is the only one left and it corresponds to storing the charges

outside the repulsive gravitational core. In this paper, for the convenience of treatment,

we assume that all charges are at the IR brane located at rm. With this set up, we can

now calculate the phase diagram.

5In the round boundary case [23] with high chemical potential, there is no phase transition in high high

chemical potential. In the flat boundary limit only high chemical potential case survive and the result is

reduced to the previous section. So, although the boundary condition is different to ours, their result itself

is not in conflict with ours.
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r+

T

(a)

0.5 0.75 1.25 1.5 1.75 2
r+

1

2

3

T at DI=0

(b)

Figure 1: Temperature as function of r+. (a) fixed q, (b) T v.s r+ at the phase boundary.

The value of AdS action with charge at IR brane is given by

IAdS+Q =
βV3

2κ2R3

(

−m +
2(L4 − r4

m)

R2
+

2κ2

g2

Q2

r2
m

)

, (4.2)

where m comes from the condition the temperature of AdS was tuned by (3.8). Now the

difference of the actions of two phases is

∆I =
βV3

2κ2R3

[

m − 2(r4
+ − r4

m)

R2
+

q2

r2
+

+
2κ2Q2

g2

(

1

r2
+

− 1

r2
m

)]

, for r+ > rm (4.3)

=
βV3

2κ2R3

[

m +
q2

r2
m

]

> 0, for r+ < rm. (4.4)

The phase boundary is given by ∆S = 0. It is helpful to figure the temperature as a

function of the horizon radius r+. See figure 1. Notice that unlike the round boundary

case, temperature is monotonically increasing function of r+ for all fixed value of q starting

from r+ = q1/3/21/6 where T = 0 (See figure 1(a)). However it is monotonically (rapidly)

decreasing function of r+ for 21/4 < r+/rm < 1.27517 which is the relevant region for the

phase boundary. ( See figure 1(b).) The phase boundary is parametrically given by

q̃ = r̃+

√

r̃4
+ − 2

5 − 3r̃2
+

, T̃ = r̃+

(

1 − 1

2

r̃4
+ − 2

r̃4
+(5 − 3r̃2

+)

)

, (4.5)

with r̃+ = r+/rm, q̃ = qR/r3
m and T̃ = πTR2/rm. See figure 2(a).

Notice that the phase diagram closes at finite density unlike the case without gravity

back reaction [17, 22], where phase diagram is open. The main reason of this change

is attributable to the change of the definition of the temperature by the second term of

eq. (3.3).

4.2 Fixed chemical potential

When we fix chemical potential, charge itself is not fixed. Only average charge is fixed. So

one might choose, as the low temperature phase, the thermal AdS without charge. The
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Figure 2: Phase diagrams for the fixed charge (a) and for the fixed chemical potential (b).

In q-T space, two ends points of phase boundary are given by (q, T ) = (0, 21/4rm/πR2) and

(2.9314r3
m/R, 0). Below (over) the boundary is the (de-)confinement region.

phase diagram of resulting system is worked out in the appendix. The issue here is that

as a consequence of the choice, there would be no chemical potential dependence of the

system in the low temperature phase. One might argue that µ independence is analogue

of the temperature independence of the low temperature phase of large Nc limit. For the

round boundary, this choice was actually taken in [23]. In [20] this consequence is used to

support the chemical potential independence in chiraly asymmetric case.

However, comparing confinement phase relative deconfinement phases, thermodynam-

ics functions of baryons are not so suppressed compared with that of glueballs. The gluons

are adjoint so degree of freedom in confined phase relative to that in deconfined phase is

O(1/N2
c ), while for baryon case, it is suppressed by O(1/Nc). So it is not clear whether

baryon density independence can be implied by the temperature independence, especially

when we consider the gravity back reaction. Also, if there is no charge in the system at

all, electric potential is globally constant and if we calculate the average charge, it is zero.

〈Q〉 = −
(

∂Ω

∂µ

)

β

= 0. (4.6)

It vanishes because there is no chemical potential dependence of the system. It is not

sensible to have zero charge density for any chemical potential, since the latter case will have

charge dependence as we will show shortly. Furthermore, this means the relation with fixed

charge case by the Legendre transformation would be lost. Therefore we should not take the

pure AdS space describe the low temperature phase. In this paper, we take the view that

we should take the Legendre transform of the fixed charge system, which discussed in the

previous subsection. Then, the only change is replacing q → aRr2
+µ, whose jacobian does

not involve any singularity over the r+ region of the phase boundary. The phase diagram

has the same topology as one can see in figure 2(b). So we do not repeat the analysis here.

The point of interest is that the thermodynamic potential defined by the Legendre

transformation of the previous sections have non-trivial chemical potential dependence,
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simply because the fixed charge case has non-trivial charge dependence. This is the answer

to the issue we raised in the beginning of this section.

Finally one may want to compare the phase diagram in this section with those in the

appendix, where we analyzed the choice taking the AdS space with no charge as the low

temperature background.

5. Discussion

In this paper, we considered the back reaction of the metric to the baryon charge for the

case where AdS5 bulk is completely filled with flavor brane. For the high temperature

phase, the unique gravity solution coupled with U(1) electric potential is the charged AdS

black hole with flat boundary. We also addressed the issue whether we have a chemical

potential dependence in low temperature confining phase and concluded there is non-trivial

chemical potential dependence. Phase diagram for hard wall model in the presence of

baryon charge is worked out and it turns out that phase diagram closes at finite baryon

density. This is very different from the previous treatment without gravity back reaction.

We emphasize that the general consideration of gravity back reaction in top down models

are non-trivial [25, 26] and the simplicity of present model is coming from the bulk-filling

nature of the flavor branes in the effective ads/qcd models in the bottom-up approach.

We also want to point out that with the charge dependence of the metric, density

dependence of physical quantities can be encoded in quadratic action of AdS/QCD without

adding higher order α′ correction, due to the metric change, while in brane embedding

approach, one has to include the higher order O(F 4) effect to see it [34]. It is interesting to

workout the density dependence of physical quantities (mass and couplings) in this model.

There is another issue in the baryon density in AdS/CFT which is not treated in

this paper. IN reference, [18], electric charges were added with boundary condition such

that adding charges does not change smooth surface structure. The phases allowed in this

assumption is rich. Shortly after the paper [18], the authors of ref. [19], pointed out that

electric charges on flavor branes are fundamental strings’ end points. The force balancing

condition is imposed and it was concluded that due to the spiky structures of the surface,

branes should always touch the horizon, even at very low temperature. As a consequence,

even a tiny amount of baryons should change the whole phase diagram which is reminiscent

to the situation treated here as a puzzle. We believe that this issue need to be discussed

more carefully, since baryon vertex staying outside the horizon can change the conclusion

very easily. Here out set up is such that brane is filling the bulk so that we can not address

this issue. It will be treated in a separate paper [35].
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Figure 3: Phase diagrams for the fixed chemical potential with AdS without charge as the low

temperature phase. (a)r+ v.s µ. In actual plot r means r+/rm and µ means µaR/rm; (b) Tem-

perature v.s chemical potential; Actual plot is TaR/rm v.s µaR/rm. In each case, the thick line is

the phase boundary and the connection point is (T, µ, r+) = (rm/(2aR), rm/(aR), rm) respectively.

Notice that phase diagram closes in T -µ diagram.

A. Phase diagram for grand canonical system with thermal AdS as the

low temperature phase

The difference of actions is

IRN − IAdS =
βV3

2κ2R3

(

−
(

r4
+

R2
+

q2

r2
+

)

+
2r4

m

R2

)

, for r+ > rm (A.1)

=
βV3

2κ2R3

((

r4
+

R2
+

q2

r2
+

)

− 2q2

r2
m

)

, for r+ < rm. (A.2)

One can study the phase diagram by looking at the locus of the ∆S = 0:

(r+/rm)4 + (r+/rm)2(aRµ/rm)2 = 2, for r+ > rm, (High T branch), (A.3)

rm
2/r+

2 + r2
m/(aRµ)2 = 2, for r+ < rm, (Low T branch). (A.4)

The phase diagram in (µ, r+) is shown in figure 3(a). Notice that there is a discontinuity

in derivative at the connection point (µ, r+) = (rm/(aR), rm).

For the large chemical potential the phase boundary seems to saturate asymptotically:

r+ → rm√
2

(

1 +
r2
m

4a2

1

µ2

)

, (A.5)

which is similar to the results in [17, 22], where back reaction of the probe brane is not

considered with identification T = r+

πR2 . However, this similarity is just apparent one. In

our case, the temperature is given by T = r+

πR2 − 1
2π

(aµ)2

r+
, and we need to consider the

implication of the correction given by the second term. For the positivity of temperature
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we need r+ ≥ Raµ√
2

, which requires r ≥
√

3
2 rm for the low temperature branch and r ≥

(2/3)1/4rm for high temperature branch. One can easily work out the phase boundary in

the parametric form:

T̃H = r̃+

(

3/2 − 1/r̃4
+

)

, (A.6)

µ̃H =
√

2 − r̃4
+/r̃+, (A.7)

for the high temperature branch and

T̃L = r̃+
r̃2
+ − 3/4

r̃2
+ − 1/2

, (A.8)

µ̃L =
r̃+

√

2r̃2
+ − 1

, (A.9)

for the low temperature branch. Here we used the scaled variables, r̃+ = r+/rm, T̃ =

TaR/rm and µ̃ = µaR/rm. By Plotting temperature v.s chemical potential, we see that the

phase diagram closes. See figure 3(b). This difference of results can be easily understood:

The chemical potential is related to the charge by µ = Q/r2
+ and charge is of order Nf/Nc,

therefore in AdS/CFT with probe brane approach the range of the chemical potential is

rather limited. However, our result indicates that, with large Nf and large gravity back

reaction, the phase diagram closes.
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